Affine Grassmannians and Geometric Satake Equivalences

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine Grassmannians and the Geometric Satake in Mixed Characteristic

We endow the set of lattices in Qp with a reasonable algebro-geometric structure. As a result, we prove the representability of affine Grassmannians and establish the geometric Satake correspondence in mixed characteristic. We also give an application of our theory to the study of Rapoport-Zink spaces.

متن کامل

Affine Partitions and Affine Grassmannians

We give a bijection between certain colored partitions and the elements in the quotient of an affine Weyl group modulo its Weyl group. By Bott’s formula these colored partitions give rise to some partition identities. In certain types, these identities have previously appeared in the work of Bousquet-Melou-Eriksson, Eriksson-Eriksson and Reiner. In other types the identities appear to be new. F...

متن کامل

Twisted Geometric Satake Equivalence

Let k be an algebraically closed field and O = k[[t]] ⊂ F = k((t)). For an almost simple algebraic group G we classify central extensions 1 → Gm → E → G(F) → 1, any such extension splits canonically over G(O). Fix a positive integer N and a primitive character ζ : μN (k) → Q ∗ l (under some assumption on the characteristic of k). Consider the category of G(O)biinvariant perverse sheaves on E wi...

متن کامل

Geometric Satake, Springer Correspondence, and Small Representations

For a simply-connected simple algebraic group G over C, we exhibit a subvariety of its affine Grassmannian that is closely related to the nilpotent cone of G, generalizing a well-known fact about GLn. Using this variety, we construct a sheaf-theoretic functor that, when combined with the geometric Satake equivalence and the Springer correspondence, leads to a geometric explanation for a number ...

متن کامل

Introduction to Affine Grassmannians

3 Uniformization 9 3.1 Uniformization of P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Affine Loop Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Uniformization of general curves . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Applications of uniformization . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 The Beilinson-Drinfeld Grassmann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2015

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnv226